
An Experimental Study of Bitmap Compression vs.
Inverted List Compression

Jianguo Wang Chunbin Lin Yannis Papakonstantinou Steven Swanson
Department of Computer Science and Engineering

University of California, San Diego
{csjgwang, chunbinlin, yannis, swanson}@cs.ucsd.edu

ABSTRACT

Bitmap compression has been studied extensively in the
database area and many efficient compression schemes were
proposed, e.g., BBC, WAH, EWAH, and Roaring. Inverted
list compression is also a well-studied topic in the informa-
tion retrieval community and many inverted list compres-
sion algorithms were developed as well, e.g., VB, PforDelta,
GroupVB, Simple8b, and SIMDPforDelta. We observe that
they essentially solve the same problem, i.e., how to store a
collection of sorted integers with as few as possible bits and
support query processing as fast as possible. Due to his-
torical reasons, bitmap compression and inverted list com-
pression were developed as two separated lines of research
in the database area and information retrieval area. Thus,
a natural question is: Which one is better between bitmap
compression and inverted list compression?

To answer the question, we present the first comprehensive
experimental study to compare a series of 9 bitmap compres-
sion methods and 12 inverted list compression methods. We
compare these 21 algorithms on synthetic datasets with dif-
ferent distributions (uniform, zipf, and markov) as well as
8 real-life datasets in terms of the space overhead, decom-
pression time, intersection time, and union time. Based on
the results, we provide many lessons and guidelines that can
be used for practitioners to decide which technique to adopt
in future systems and also for researchers to develop new
algorithms.

1. INTRODUCTION
Bitmaps have been widely adopted in modern database

systems including both row-stores and column-stores, e.g.,
PostgreSQL, Microsoft SQL Server, Oracle, MonetDB [32],
C-store [1], Vertica [24], and Apache Hive [28]. A bitmap
is allocated for a unique value in the indexed column. In
particular, the i-th bit of the bitmap is 1 if and only if
the i-th record contains that value. The number of bits
in the bitmap is the number of records in the database
(i.e., domain size). As an example of a smartphone sales

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14–19, 2017, Chicago, IL, USA.

c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064007

database, assume “iPhone” appears at the 2nd, 5th, and
10th record in the phone_name column, then the bitmap of
“iPhone” is 01001000010000000000 (assuming there are 20
records in total). Then many SQL queries can be answered
efficiently with bitmaps. For example, finding the customers
who bought “iPhone” from “California” can be framed as
performing AND over the bitmaps of “iPhone” and “Califor-
nia”. In practice, bitmaps are stored in a compact approach
to save space [1, 18] because uncompressed bitmaps con-
sume too much space especially for high-cardinality columns.
As a result, many efficient bitmap compression methods
were developed, e.g., BBC [22], WAH [22], EWAH [26],
PLWAH [17], CONCISE [13], VALWAH [20], SBH [23], and
Roaring [10].

Inverted lists are the standard data structure in modern
information retrieval (IR) systems. All search engines, an
important subset of IR systems, including Google [7, 16],
Bing [21, 41], Yahoo! [6, 9], Apache Lucene, Apache Solr,
Elasticsearch,1 and Lucidworks2 rely on inverted lists for
finding relevant documents efficiently. An inverted list is a
set of document IDs for those documents (e.g., web pages)
that contain the term. To minimize space usage, inverted
lists are typically stored in a compressed format [27], e.g.,
VB [15], PforDelta [43], NewPforDelta [40], Simple16 [42],
GroupVB [16], Simple8b [3], PEF [30], SIMDPforDelta [25],
and SIMDBP128 [25].

Motivation. Even though bitmap compression and in-
verted list compression are developed in two separated areas
(database and information retrieval) individually, they es-
sentially solve the same problem – how to store a collection of
sorted integers with as few as possible bits and support query
processing (e.g., intersection) as fast as possible – but from
different angles. That is because a bitmap and an inverted
list can be converted to each other equivalently since the
positions of 1’s in the bitmap are the actual values in the in-
verted list. For instance, the bitmap 01001000010000000000
can be converted to the inverted list {2, 5, 10} and vice versa.
Dating back to the 1970s, information retrieval researchers
tried to consider bitmap compression to represent a col-
lection of document IDs [34] but switched to inverted list
compression since the 1990s [15]. But just in the 1990s [4],
database researchers started to explore bitmap compression
in SQL query processing and quickly established its impor-
tant role in databases [11, 12, 38, 39]. Since then, bitmap
compression and inverted list compression have become two

1https://www.elastic.co
2https://lucidworks.com

separated lines of research that usually do not refer to each
other [2, 10,16,22,23,43].

We observe that a natural yet consistently overlooked is-
sue in the literature is: Which one is better between bitmap
compression and inverted list compression? By “better”, we
mean lower space and higher query performance. It is criti-
cal to answer the question by figuring out in what scenarios
will bitmap compression or inverted list compression become
better. Without a thorough understanding, as we show
in experiments, an inappropriate method can incur up to
5000× more space overhead and 2000× performance degra-
dation. Answering the question also provides insights and
guidelines for researchers to develop new algorithms by con-
sidering the strengths and weaknesses of the two popular
techniques.

Limitations of existing works. Previous studies mainly
evaluated bitmap compression and inverted list compression
individually. Usually, whenever a new bitmap compression
method was proposed, it was solely compared against re-
cent bitmap compression methods without comparing with
inverted list compression methods [10, 13, 15, 17, 20, 23, 26].
Likewise, whenever a new inverted list compression method
was invented, it was only compared with recent inverted list
compression methods without comparing with bitmap com-
pression methods [2–4, 16, 22, 25, 30, 40, 43]. As far as we
know, there is only one existing work that compared bitmap
compression with inverted list compression [8]. But there
are some limitations observed in [8]:

• Incomprehensive study. It only compared one bitmap
compression method WAH [22] with one inverted list
compression method PforDelta [43]. However, nei-
ther is the best in their respective areas. For ex-
ample, PLWAH [17], CONCISE [13], VALWAH [20],
and Roaring [10] outperform WAH significantly. Also
in the inverted list side, OptPforDelta [40], NewP-
forDelta [40], SIMDPforDelta [25], and SIMDBP128 [25]
are better than PforDelta in many aspects. Therefore,
it is inappropriate to draw conclusions by simply com-
paring WAH with PforDelta.

• Uncontrolled memory and disk overhead. In [8], the
compressed data was stored on the disk but partially
buffered in main memory through OS. However, this
cannot guarantee that the OS buffer stores the same
amount of data when running WAH and PforDelta. It
is highly possible that the OS buffers more data for
WAH than PforDelta (or vice versa) since it is com-
pletely up to the OS to control where the data is ac-
tually stored (disk or memory). As an example of the
Figure 4 in [8], it took 28 seconds to execute Q2.1 for
WAH on the SSB benchmark [29] with a scale factor
of only 1. But it took almost zero time for PforDelta.
Thus, it is likely that WAH incurred a higher penalty
(than PforDelta) from accessing disk.

• Inconsistent programming languages. In [8], WAH was
implemented in C++ but PforDelta was implemented
in Java. Besides that, the compilation flags were not
documented in that work. The O3 and O0 flags make
a huge difference in execution time.

• Insufficient datasets. It used just one real dataset
(SSB) [29]. However, there are many other real datasets
used in prior works but were ignored by [8].

Contributions. The main contribution is that we present
the first comprehensive experimental study to compare a se-
ries of 9 bitmap compression methods and 12 inverted list
compression methods in main memory.3 We evaluate these
21 compression algorithms on synthetic datasets with dif-
ferent distributions (uniform, zipf, and markov) as well as 8
real-life datasets regarding the space overhead, decompres-
sion time, intersection time, and union time.

Based on the results, we refresh the understanding of
bitmap compression and inverted list compression. In par-
ticular, we (1) remedy many misunderstandings and inac-
curate conclusions made in prior works; and (2) show the
scenarios of when will bitmap compression outperform in-
verted list compression and vice versa.

Paper organization. The rest of this paper is structured
as follows. Section 2 reviews existing bitmap compression
techniques. Section 3 discusses inverted list compression
methods. Section 4 describes the experimental setup. Sec-
tion 5 presents experimental results on synthetic data. Sec-
tion 6 shows experimental results on real data. Section 7
summarizes the paper and provides lessons.

2. BITMAP COMPRESSION
In this section, we review existing bitmap compression

methods. Figure 1 shows a brief history.

Overview. All bitmap compression algorithms take as in-
put an uncompressed bitmap and produce a compressed
bitmap with as few as possible bits. They generally em-
ploy run-length encoding (RLE) to compress a sequence of
identical bits with the bit value and count although there
are exceptions such as Roaring. But different approaches
differ in the way of handling the units of RLE (e.g., bytes
or words), encoding the runs, and compressing the count.

2.1 WAH
WAH (Word-Aligned Hybrid) [22] is a classic bitmap com-

pression algorithm. It partitions an uncompressed bitmap
(input) into groups where each group contains 31 bits. It
classifies those groups into two categories: fill groups and lit-
eral groups. A group is called a fill group if all the bits in the
group are identical. For example, 00000000000000000000000
00000000 (or 031 in short) is a fill group. In particular, if all
the bits are 1, it is called a 1-fill group; if all the bits are 0, it
is called a 0-fill group. In contrast, a group is called a literal
group if its bits contain both 0 and 1. WAH only compresses
fill groups and does not compress literal groups. In partic-
ular, WAH compresses a sequence of consecutive fill groups
together using just one word with the following information
stored. The 1st bit is 1 indicating it stores the fill group.
The 2nd bit indicates which fill group (0-fill or 1-fill). The
rest 30 bits store the number of fill groups. WAH encodes a
literal group using one word (32 bits), where the first bit of
the word is 0 and the rest 31 bits are copied from the literal
group. For example, assume the input uncompressed bitmap
(160 bits) is 1020130111125 (note that 020 means twenty con-
secutive 0’s). Then WAH partitions it into 6 groups: G1

(10201307), G2 (031), G3 (031), G4 (031), G5 (011120), G6

(02615). Then WAH encodes G1 using (010201307); encodes
G2, G3, and G4 together using 10027011; encodes G5 using
0011120; G6 using 002615.

3We leave the discussion of SSDs [36,37] to future work.

1990

V
B

[1
5
]

1995

B
B
C

[4
]

2001
W
A
H

[2
2
]

2005

S
im

p
le
9
[2
]

2006

P
fo
rD

el
ta

[4
3
]

2008

O
p
tP

fo
rD

el
ta

[4
0
]

N
ew

P
fo
rD

el
ta

[4
0
]

2009

S
im

p
le
1
6
[4
2
]

G
ro
u
p
V
B

[1
6
]

2010

S
im

p
le
8
b
[3
]

E
W
A
H

[2
6
]

P
L
W
A
H

[1
7
]

C
O
N
C
IS
E

[1
3
]

2014

P
E
F

[3
0
]

V
A
L
W
A
H

[2
0
]

2015

S
IM

D
P
fo
rD

el
ta

[2
5
]

S
IM

D
B
P
1
2
8
[2
5
]

2016

S
B
H

[2
3
]

R
o
a
ri
n
g
[1
0
]

Figure 1: A brief history of representative bitmap compression and inverted list compression approaches

The advantage of WAH (as well as other bitmap compres-
sion methods) is that it supports intersection (AND) and
union (OR) directly on compressed bitmaps without decom-
pression. The intersection algorithm follows a merge-based
style by allocating each compressed bitmap a pointer to de-
note the active word [22]. Every time, WAH performs inter-
section over two active words depending on different cases:
literal word vs literal word, literal word vs fill word, fill word
vs literal word, and fill word vs fill word. After that, it ad-
justs the pointers accordingly for further intersection.4 The
algorithm terminates once a bitmap does not have any active
word. The union algorithm works in a similar way.

All the other bitmap compression methods adopt a similar
intersection and union algorithm without decompression but
differ in handling the intersection of two active bytes/words
and interpreting the meaning of the active bytes/words.

2.2 EWAH
EWAH (Enhanced Word-Aligned Hybrid) [26] is a vari-

ant of WAH by observing that WAH takes too much space
to store literal groups. EWAH divides an uncompressed
bitmap (input) into 32-bit groups. It encodes a sequence
of p (p ≤ 65535) fill groups and q (q ≤ 32767) literal groups
into a marker word followed by q literal words (stored in
the original form). The marker word stores the following
information. The 1st bit indicates which fill group (0-fill
or 1-fill), the next 16 bits store the number of fill groups
p. The last 15 bits store the number of literal groups q.
EWAH always starts with a marker word. For example,
assume the input bitmap (160 bits) is 1020130111125, then
EWAH partitions it into 5 groups: G1 (10201308), G2 (032),
G3 (032), G4 (032), G5 (07125). Then EWAH encodes G1

using 00160141
︸ ︷︷ ︸

marker

10201308 (p = 0, q = 1); encodes G2, G3, G4,

G5 using 00131000141
︸ ︷︷ ︸

marker

07125 (p = 4, q = 1).

2.3 CONCISE
CONCISE (Compressed N Composable Integer Set) [13]

is also proposed to improve WAH. It addresses a limitation
of WAH that if a literal group has only one bit that is dif-
ferent from the next fill group (the literal group is called a
mixed fill group and the bit is called an odd bit), then WAH
still uses a full word to store the literal group. In contrast,
CONCISE stores the mixed fill group with the next fill group
together by storing the position of the odd bit. In particu-

4WAH may also adjust the in-word pointer of a literal word
to indicate which fill group is active.

lar, CONCISE partitions an uncompressed bitmap (input)
into 31-bit groups. It uses one word to represent a literal
group by setting the first bit to 1 and the rest 31 bits by
copying the information from the 31-bit group. CONCISE
also uses a word to represent a run of fill groups. It contains
the following information. The 1st bit is set to 0. The 2nd
bit indicates which fill group (0-fill or 1-fill). The following
5 bits store the position of the odd bit, but they are 00000
if there is no any odd bit. The remaining 25 bits store the
number of fill groups minus one. For example, assume the
input bitmap (160 bits) is 02310111125, then CONCISE par-
titions it into 6 groups: G1 (023107), G2 (031), G3 (031),
G4 (031), G5 (011120), G6 (02615). Then WAH encodes G1

to G4 using 1000111022011; encodes G5 using 0011120; G6

using 002615.

2.4 PLWAH
PLWAH (Position List WAH) [17] is similar to CONCISE,

but stores the mixed fill group in a different way. PLWAH
compresses a bitmap by four steps. (1) It partitions an un-
compressed bitmap (input) into 31-bit groups. (2) It iden-
tifies fill groups, i.e., groups whose bits are all 0 or 1. (3) It
merges those consecutive fill groups together using a word.
The 1st bit is 1 indicating it encodes the fill groups. The 2nd
bit indicates which fill group (0-fill or 1-fill). The next 5 bits
are 00000 indicating it contains pure fill groups. The rest 25
bits store the number of fill groups. (4) It identifies the lit-
eral group preceded by a fill group but the literal group has
only one bit that is different from the fill group. It encodes
all the fill group and the mixed fill group together using one
word. Compared with the previous step, the only difference
is that the unset 5 bits denote the odd bit position. For
example, assume the input uncompressed bitmap (160 bits)
is 1020130111125. Then PLWAH partitions it into 6 groups:
G1 (10201307), G2 (031), G3 (031), G4 (031), G5 (011120),
G6 (02615). Then PLWAH encodes G1 using (010201307);
encodes G2, G3, and G4 together using 1000000022011; en-
codes G5 using 0011120; G6 using 002615.

2.5 VALWAH
VALWAH (Variable-Aligned Length WAH) [20] improves

upon WAH by addressing the following limitation of WAH:
WAH uses 30 bits to represent a run of up to 230 − 1 fill
groups. However, in most cases, there are much fewer fill
groups. As a result, VALWAH chooses a much smaller seg-
ment size s such that multiple segments can be encoded
into a w-bit word (e.g., w = 32). Let b be the alignment
factor, then a w-bit word can contain at most w

b
segments.

However, it is also possible that fewer segments are stored.

In this case, the segment size is multiple of (b − 1) bits.
Precisely, s can be determined by s = 2i × (b − 1), where
0 ≤ i ≤ (log2 w − log2 b). VALWAH also uses another pa-
rameter λ to make a tradeoff between space overhead and
query performance. VALWAH encodes different bitmaps us-
ing different segment lengths to minimize the space over-
head. However, this directly affects the query performance
because of the segment alignment issue.

2.6 SBH
SBH (Super Byte-aligned Hybrid) [23] is a byte-aligned

(instead of word-aligned) bitmap compression method in or-
der to reduce the space overhead. SBH first divides an un-
compressed bitmap (input) into a sequence of 7-bit groups.
It encodes a literal group with one byte, where the 1st bit is
set to 0 and the rest 7 bits are copied from the literal group.
It encodes a sequence of consecutive k (k ≤ 4093) fill groups
as follows. (1) If there are k consecutive fill groups and
k ≤ 63, then SBH encodes those fill groups using one byte:
the 1st bit is set to 0, the 2nd bit indicates which fill group
(0-fill or 1-fill), and the rest 6 bits store the number k. (2) If
63 < k ≤ 4093, then SBH stores those fill groups using two
bytes. For the first byte, the 1st bit is set to 0, the 2nd bit
indicates which fill group, the rest 6 bits of the current byte
stores the lower 6 bits of k. For the second byte, the first two
bits are the same with the previous byte, and the rest 6 bits
store the higher 6 bits of k. For example, assume the input
bitmap (560 bits) is 1020130511125, then SBH partitions it
into 80 groups: G1 (106), G2 (07), G3 (07), G4 (1704), G5

to G76 (07), G77 (0314), G78 (17), G79 (17), G80 (17). Thus,
SBH encodes G1 using 0106; encodes G2 and G3 together us-
ing 10000010 (k = 2); encodesG4 using 01

704; encodesG5 to
G76 using two bytes: 1000100010000001 (k = 72); encodes
G77 using (00314); encodes G78 to G80 using 11000011.

2.7 Roaring
Roaring [10] is a hybrid bitmap compression method and

it is not based on run-length encoding. Roaring partitions
the entire domain [0, n) (n < 232) into different buckets of
range 216 where all the elements in the same chunk share the
same 16 most significant bits. For example, the first three
buckets manage the following ranges: [0 ∼ 65535], [65536 ∼
65536 × 2 − 1], and [65536 × 2 ∼ 65536 × 3 − 1]. Roaring
encodes a chunk depending on the number of actual elements
k in that chunk. In particular, if k > 4096, Roaring uses
a 65536-bit uncompressed bitmap to encode the elements;
otherwise, it uses a sorted array of 16-bit short integers.
Roaring chooses 4096 as the threshold because it guarantees
that each integer uses no more than 16 bits to represent,
because Roaring uses either 65536 bits to represent 4096
integers or at most 16 bits per integer for the array bucket.
Note that, Roaring does not need to store the higher 16
bits for all the elements within the same bucket because
they are the same. Thus, Roaring is a hybrid compression
method that incorporates uncompressed (16-bit) integer list
and uncompressed bitmap.
Roaring also supports intersection (AND) and union (OR)

directly on compressed bitmaps. During each round, it inter-
sects (or unions) two buckets from different bitmaps accord-
ing to the following four combinations: bitmap vs bitmap,
bitmap vs array, array vs bitmap, and array vs array.

2.8 BBC
Finally, we explain BBC (Byte-aligned Bitmap Code) [4,

22], which is one of the earliest bitmap compression algo-
rithms. We put it at the end of this section because of its
complexity. BBC partitions an uncompressed bitmap (in-
put) into bytes where each byte contains 8 bits. It classifies
those bytes into two categories: fill bytes and literal bytes.
A byte is called a fill byte if all the bits in the byte are iden-
tical. In particular, if all the bits are 1, it is called a 1-fill
byte; if all the bits are 0, it is called a 0-fill byte. In contrast,
a byte is called a literal byte if its bits contain both 0 and
1. BBC compresses a collection of such bytes by identify-
ing different patterns (or cases) and encodes each pattern
individually to save space.

Pattern 1 : a sequence of at most 3 fill bytes followed by
at most 15 literal bytes. BBC stores this sequence of bytes
by a header byte followed by a sequence of literal bytes.
The header byte (8 bits) contains the following information.
The 1st bit is 1 to indicate Pattern 1. The 2nd bit indicates
which fill byte (0-fill byte or 1-fill byte). The next two bits
(3rd and 4th bit) store the number of fill bytes. And the
remaining four bits store the number of literal bytes. As an
example of Figure 2a, it has two fill bytes and two literal
bytes. BBC encodes the two fill bytes using a single byte
10100010 and the two literal bytes as they are.

Pattern 2 : a sequence of at most 3 fill bytes followed by a
single byte with only one bit that is different from the previ-
ous fill byte. BBC encodes this sequence of bytes in a single
compact byte. The first two bits (1st and 2nd bit) are 01
to indicate Pattern 2. The 3rd bit indicates which fill byte
(0-fill or 1-fill). The next two bits (4th and 5th bit) store the
number of fill bytes. And the rest three bits store the posi-
tion of the odd bit. As an example of Figure 2b, the input
is 00000000 00000000 00000010, the output is 01010001.

Pattern 3 : a sequence of at least 4 fill bytes followed by
up to 15 literal bytes. BBC compresses this sequence of
bytes by a header byte, followed by a multi-byte counter,
and a sequence of literal bytes. The header byte stores the
following information. The first three bits are 001 to indicate
Pattern 3. The 4th bit indicates which fill byte (0-fill or 1-
fill). The last four bits store the number of literal bytes.
The multi-byte counter stores the number of fill bytes. The
counter is compressed using VB compression (explained in
Section 3.1). Figure 2c shows an example where the multi-
byte counter (i.e., 4) is encoded as 00000100.

Pattern 4 : a sequence of at least 4 fill bytes followed by
a single byte with only one bit that is different from the
previous fill byte. BBC encodes this sequence of bytes in
a header byte and a multi-byte counter. The header byte
stores the following information. The first four bits are 0001
to indicate Pattern 4. The 5th bit indicates which fill (0-fill
or 1-fill). The last three bits store the position of the odd
bit. The multi-byte counter stores the number of fill bytes
encoded in VB. Figure 2d shows an example of this case.

3. INVERTED LIST COMPRESSION
In this section, we describe inverted list compression meth-

ods (see Figure 1 for a brief history).

Overview. Inverted list compression approaches usually
follow a common wisdom of computing the deltas (a.k.a d-
gaps) between two consecutive integers first and then com-
press the detals, although there are exceptions such as PEF
and SIMDBP128*. For example, let L = {10, 16, 19, 28, 39,
48, 60}, then most solutions usually convert L to L′ = {10, 6,

00000000 00000000 00110010 01010001

10100010 00110010 01010001

(a) Pattern 1

00000000 00000000 00000010

01010001

(c) Pattern 3

00000000 00000000 0101000100000000 00000000

00000000 00000000 1000000000000000 00000000

(b) Pattern 2 (d) Pattern 4

00100001 00000100

00010111 00000100

Figure 2: An example of BBC

3, 9, 11, 9, 12}, where L′[0] = L[0] and L′[i] = L[i]−L[i−1]
(i ≥ 1). To prevent from decompressing the entire list dur-
ing query processing, it organizes those d-gaps into blocks
(of say 128 elements per block5) and builds a skip pointer
per block such that only a block of data needs to be decom-
pressed [40,42,43].

Although the run-length encoding in bitmap compression
algorithms bears some commonality with the d-gaps in in-
verted list compression algorithms, they are different. The
run-length encoding is usually byte-level or word-level (in-
stead of bit-level), e.g., BBC, WAH, EWAH, PLWAH, CON-
CISE, VALWAH, SBH, in order to leverage bit-wise opera-
tions (between two literal bytes or words). Thus, consecu-
tive identical bits within the same byte or word are not com-
pressed and they are kept as a literal byte or word. However,
the d-gaps are essentially bit-level run-length encoding. As
a result, inverted list compression algorithms cannot benefit
from bit-wise operations but can benefit from efficient data
skipping due to skip pointers.6

3.1 VB
VB (Variable Byte) [15] is a classic compression tech-

nique that is known under many names, e.g., VByte, Varint,
VInt. VB encodes each integer (i.e., d-gap) in one or more
bytes. It uses 7 bits of a byte to store the actual data
while keeping the most significant bit (MSB) as a flag bit
to indicate whether the next byte belongs to this integer.
For example, consider the value 16385 whose binary expres-
sion is 100000000000001, then VB encodes it using 3 bytes:
10000001 10000000 00000001.

3.2 GroupVB
GroupVB (Group Varint Encoding) [16] is developed by

Google by observing that VB incurs many branches dur-
ing decompression. GroupVB compresses four values at the
same time and it uses a 2-bit flag for each value. GroupVB
factors out the four 2-bit flags into a single header byte fol-
lowed by all the data bits. Such a layout makes it easier to
decompress multiple integers simultaneously to reduce CPU
branches.

3.3 PforDelta
PForDelta [43] is a mature compression algorithm. The

basic idea is that it compresses a block of 128 d-gaps by
choosing the smallest b in the block such that a majority
of elements (say the threshold is 90%) can be encoded in b

5The block size represents a tradeoff between space and time
and several existing works suggest 128 as the block size [3,
42].
6Appendix B presents the details of using skip pointers for
intersection.

bits (called regular values). It then encodes the 128 values
by allocating 128 b-bit slots, plus some extra space at the
end to store the values that cannot be represented in b bits
(called exceptions). Each exception takes 32 bits while each
regular value takes b bits. In order to indicate which slots
are exceptions, it uses the unused b-bit slots from the pre-
allocated 128 b-bit slots to construct a linked list, such that
the b-bit slot of one exception stores the offset to the next
exception. In the case where two exceptions are more than
2b slots apart, it adds additional forced exceptions between
the two slots.

Besides the standard PforDelta, we also run PforDelta
by setting the percentage of regular values in a block to be
100%. We refer to it as PforDelta*. PforDelta* chooses b
such that all values are within 2b instead of a majority of el-
ements being within 2b (as in PforDelta). Thus, PforDelta*
does not have exceptions. The advantage of PforDelta* over
PforDelta is that the decompression is ultra fast as it does
not need to traverse the array of exceptions.

3.4 NewPforDelta
NewPforDelta [40] is a variant of PforDelta to reduce

the space overhead of PforDelta. The main difference is
that NewPforDelta stores the offset of exceptions in two ar-
rays while PforDelta uses one array. Recall that, a limita-
tion of PforDelta is that when two consecutive exceptions
have a distance bigger than 2b, PforDelta has to use more
than one offset to represent the distance by adding forced
additional exceptions between the two exceptions. NewP-
forDelta solves the problem by storing the offset values and
parts of the exceptions in two additional arrays. More pre-
cisely, for an exception, NewPforDelta stores the lower b
bits, instead of the offset to the next exception, in its cor-
responding b-bit slot. It then stores the higher overflow bits
and the offset in two separated arrays. These two arrays can
be further compressed.

3.5 OptPforDelta
OptPforDelta [40] is another variant of PforDelta. The

main difference is that OptPforDelta uses the optimal b bits
for each block while PforDelta chooses b such that most val-
ues are less than 2b. Note that, setting a fixed threshold
(say 90%) for the number of exceptions (as in PforDelta)
does not give the best tradeoff between space overhead and
query performance. Instead, OptPforDelta models the se-
lection of b for each block as an optimization problem in
order to get the optimal b.

3.6 Simple9
Simple9 [2] is a word-aligned compression method with

the goal of packing as many small integers as possible to a
32-bit word. In Simple9, each word has 4 status bits and
28 data bits, where the data bits can represent 9 different
combinations of values: 28 × 1-bit numbers, 14 × 2-bit num-
bers, 9 × 3-bit numbers (1 bit unused), 7 × 4-bit numbers,
5 × 5-numbers (3 bits unused), 4 × 7-bit numbers, 3 × 9-bit
numbers (1 bit unused), 2 × 14-bit numbers, or 1 × 28-bit
number. For example, if the next 14 values are all less than
4, then Simple9 stores them as 14 × 2-bit values. These 9
different combinations are indicated by 4 status bits.

3.7 Simple16
Simple16 [42] is similar to Simple9, but it has 16 cases.

Recall that Simple9 uses 4 status bits to represent 9 cases

and uses 28 bits to store data. Simple9 wastes bits in two
ways. (1) Four status bits can express up to 16 cases while
Simple9 only has 9 cases. (2) There are many unused bits.
As an example of the 5 × 5-bit case in Simple9, there are 3
bits unused. Simple16 solves these two issues by introducing
more new cases up to 16 cases. As an example the case of 5
× 5-bit numbers in Simple9, Simple16 replaces it using two
cases: 3 × 6-bit numbers followed by 2 × 5-bit numbers, and
2 × 5-bit numbers followed by 3 × 6-bit numbers. Thus,
Simple16 fully utilizes 4 status bits to represent 16 cases.

3.8 Simple8b
Simple8b [3] extends the codeword size to 64 bits instead

of 32 bits. It retains the 4-bit selector such that each word
has 4 status bits and 60 data bits. This saves space com-
pared with Simple9 and Simple16 since fewer selectors are
stored per encoded bit (4 bits per 60 bits rather than 4 bits
per 28 bits). For example, Simple8b stores twelve 5-bit in-
tegers using one 64-bit codeword, but Simple9 needs three
32-bit codewords. In addition, Simple8b is more efficient
than Simple9 and Simple16 because Simple8b leverages 64-
bit instructions.

3.9 PEF
Different from other inverted list compression algorithms,

PEF (Partitioned Elias Fano) [30] is not based on d-gaps. It
is an improved version of EF (Elias Fano) encoding [35]. EF
encodes a sequence of integers using a low-bit array and a
high-bit array. The low-bit array stores the lower b = log U

n
bits of each element contiguously where U is the maximum
possible element and n is the number of elements in the
list. The high-bit array then stores the remaining higher
bits of each element as a sequence of unary-coded d-gaps.
PEF improves EF by leveraging the clustering property of
a list. It partitions a list and applies EF encoding within a
partition [30].

3.10 SIMDPforDelta
SIMDPforDelta [25] is the SIMD version of PforDelta. It

leverages modern CPU’s SIMD instructions to accelerate the
query performance and also decompression speed. A SIMD
instruction operates on a s-bit register where s depends on
different processors. Typically, s is 128, but more recent
processors also support 256-bit or even 512-bit SIMD op-
eration. In [25], it uses 128-bit SIMD instructions. The
main idea of SIMDPforDelta is to reorganize data elements
in a way such that a single SIMD operation processes mul-
tiple elements. SIMDPforDelta stores the input elements in
an interleaving manner. In particular, let A be the input
sorted array where each element takes b (say 10) bits, S be
a 128-bit SIMD register, and S[i] be the i-th 32-bit bank.
Then SIMDPforDelta stores A[0] ∼ A[3] at the lower b bits
of S[0] ∼ S[3], respectively.

Similar to PforDelta* (Section 3.3), in the experiments,
we also run the SIMD version of PforDelta*. We refer to it
as SIMDPforDelta*.

3.11 SIMDBP128
SIMDBP128 [25] is one of the fastest compression methods

for inverted lists. It partitions the input list L into 128-
integer blocks and merges 16 blocks into a bucket of 2048
integers for SIMD acceleration. The metadata information
of a bucket is a 16-byte array where each byte stores the
number of bits used for encoding each block. Within each

bucket, SIMDBP128 uses the same number of bits to encode
each element.

In the experiments, we have also run SIMDBP128 at an-
other version which we call it SIMDBP128*. It partitions
a list into fixed-sized blocks where each block contains 128
elements. Then it maintains metadata for every 128-integer
block and uses the same number of bits to represent the
values within each block. Within a block, it organizes the
elements in a SIMD-friendly manner.

4. EXPERIMENTAL SETUP
In this section, we present the experimental settings in-

cluding experimental platform (Section 4.1), implementa-
tion details (Section 4.3), and evaluation metrics (Section 4.2).

4.1 Experimental platform
We conduct experiments on a commodity machine (In-

tel i7-4770 quad-core 3.40 GHz CPU, 64GB DRAM) with
Ubuntu 14.04 installed. The CPU’s L1, L2, and L3 cache
sizes are 32KB, 256KB, and 8MB. The CPU is based on
Haswell microarchitecture which supports AVX2 instruction
set. We use mavx2 optimization flag for the SIMD accelera-
tion. Besides that, all the algorithms are coded in C++ and
compiled using GCC 4.4.7 with O3 enabled.

In all the experiments, we exclude the time of loading com-
pressed data from disk to memory since we focus on evaluat-
ing the algorithmic performance in main memory. We leave
in the future work to evaluate their performance on disks.

4.2 Evaluation metrics
We measure each compression algorithm mainly using the

following four metrics:
(1) Space overhead. Any compression method aims for low
space overhead to save memory footprint.
(2) Decompression time. Decompression overhead is critical
to many other operations including intersection and union.
For example, intersection needs to decompress part of the
inverted lists even with skip pointers.
(3) Intersection time. Intersection is important in many
applications including search engines and databases. For
instance, intersection helps find the documents that contain
all the query terms in search engines.
(4) Union time. Union is also important to both databases
and search engines. For example, in databases, multi-criteria
query and range query can be converted to the union of a
collection of bitmaps.

4.3 Implementation
We implement all the bitmap compression methods (in-

cluding Bitset, BBC [22], WAH [22, 39], EWAH [26], CON-
CISE [13], PLWAH [17], VALWAH [20], SBH [23], Roar-
ing [10]) from scratch using C++. We try our best to im-
plement each method as efficient as possible by using CPU’s
advanced instructions such as popcnt and ctz whenever pos-
sible. The intersection as well as union of two compressed
bitmaps is a list of uncompressed integers.

In this work, we implement VB, PEF, PforDelta*, SIMDP-
forDelta*, and SIMDBP128* from scratch in C++. We im-
plement the rest inverted list compression methods (includ-
ing Simple9 [2], PForDelta [43], NewPforDelta [40], OptP-
forDelta [40], Simple16 [42], GroupVB [16], Simple8b [3],
SIMDPforDelta [25], SIMDBP128 [25]) based on the existing

FastPFor7 codebase in C++. For the intersection, we im-
plement SvS [14] since it has been widely used in practice in-
cluding Apache Lucene.8 It works in the following way. As-
sume there are k lists L1, L2, · · · , Lk (|L1| ≤ |L2| ≤ · · · |Lk|)
that are compressed. SvS decompresses the shortest list L1

first. Then for each element e ∈ L1, SvS checks whether
e appears in L2. Note that SvS does not need to decom-
press the entire L2 due to skip pointers and it only needs
to decompress the block of data that potentially contains e.
Then the results of L1 and L2 will be intersected with L3

and the process continues until Lk. We implement the union
by decompressing the lists first and merge them linearly. We
provide more implementation details in Appendix B.

5. RESULTS ON SYNTHETIC DATASETS
In this section, we present the experimental results on

evaluating bitmap compression and inverted list compres-
sion methods on synthetic datasets. We show the results of
decompression (Section 5.1), intersection (Section 5.2), and
union (Section 5.3).

Synthetic datasets. We generate synthetic datasets to
understand when will bitmap compression methods outper-
form inverted list compression methods and vice versa. We
generate data following the uniform distribution, zipf distri-
bution, and markov distribution [39] respectively. Among
all the distributions, the domain size is INTMAX, which is
231−1. In particular, for the uniform distribution, each value
is selected with the same probability. For the zipf distribu-
tion, each value is included with a different probability and

the k-th value is included with a probability of 1/kf

∑
d
j=1

(1/jf)

where f is the skewness factor and d is the domain size. For
the markov distribution [39], the probability of transforming
from 0 to 1 is p = 1

f
and the probability of transforming from

1 to 0 is q = ω
(1−ω)f

where f is the clustering factor (which

is 8 in our experiments following [39]) and ω is the density
(i.e., the ratio of the list size and the domain size). Note
that the probability of transforming from 0 to 0 is (1 − p)
and the probability of transforming from 1 to 1 is (1− q).
Note that, for all the legends in the figures, we use “Bit-

set” to represent uncompressed bitmap and “List” to repre-
sent uncompressed inverted list. Also, we measure the de-
compression overhead for an uncompressed list by allocating
a new array and measuring the overhead of memory copy.
Besides that, for all the inverted list compression methods
(except uncompressed list), we partition a list into blocks of
128 elements and build skip pointers for the blocks follow-
ing [27, 42]. Each skip pointer contains the offset (32 bits)
and start value (32 bits). Although adding skip pointers
increases the space overhead somehow, it will significantly
improve query performance as we show in Appendix C.1.
However, for bitmap compression methods, we do not build
skip pointers following the convention [13,17,22,26], because
otherwise, bitmaps cannot leverage efficient bit-wise opera-
tions for query processing.

5.1 Decompression
We start with evaluating the performance of decompres-

sion, because it is widely used in many operations including
intersection and union. Figure 3 shows the decompression

7https://github.com/lemire/FastPFor
8Note that if two lists are of similar size, we switch to merge-
based intersection for high performance.

time and space overhead on uniform data and zipf data. We
vary the list size from 1 million to 1 billion and set the do-
main size as INTMAX (2,147,483,647). The list size actually
determines the density of the corresponding uncompressed
bitmap: the longer the list is, the denser the bitmap be-
comes. Figure 3 shows that:

(1) In general, bitmap compression methods incur more
space and higher decompression overhead than inverted list
compression methods. An exception happens when the list
size is 1 billion under the uniform distribution (Figure 3d)
where bitmaps consume less space. Here are the reasons.

• Under the uniform distribution (Figure 3a – Figure 3d),
when the list size is small, i.e., the uncompressed bitmap
is sparse, there are many 0-fill words for bitmap com-
pression methods (except Roaring). Recall that bitmap
compression methods (except Roaring) require 32 bits
to represent a 0-fill word. But inverted list compres-
sion methods do not need so many bits because any
d-gap is smaller than 232. But when the list size in-
creases to 1 billion, the uncompressed bitmap becomes
very dense. As a result, bitmap compression methods
(such as Bitset and WAH) only need around d

n
bits

per integer where d is the domain size and n is the list
size. However, inverted list compression methods tend
to use more bits to represent an integer due to the out-
liers between two consecutive elements. In terms of de-
compression performance, bitmap compression meth-
ods tend to perform more bit operations because they
need to access every bit for the literal words and ex-
tract one integer at a time for fill words. However, in-
verted list compression methods (e.g., PforDelta* and
PforDelta) can extra many integers by looking at a
word. Also, many inverted list compression methods
can leverage SIMD capabilities, e.g., SIMDPforDelta*
and SIMDPBP128.

• Under the zipf distribution, the case is largely similar
to the uniform distribution. But when the list size is 1
billion, then all the integers become very concentrated
at the beginning of the domain. In other words, the
list becomes {1, 2, 3, 4, · · · }. In this case, the number
of outliers becomes very small such that inverted list
compression methods can use the minimal number of
bits to represent.

• Under the markov distribution, inverted list compres-
sion methods tend to have better decompression per-
formance than bitmap compression methods because
they can extract (or decompress) many integers by
looking at a single word, especially with SIMD acceler-
ation. However, bitmap compression methods need to
access every bit for the literal words and extract one
integer at a time for fill words. In terms of the space
overhead, inverted list compression methods usually
consume less space unless the list size is ultra large
(e.g., 1 billion). That is because if the list size is 1 bil-
lion, then inverted list compression methods tend to
have outliers that require more bits to represent when
compared to bitmap compression methods.

(2) Among all the bitmap compression methods, Roar-
ing is a winner in almost all cases in terms of both space
overhead and decompression time. That is because Roaring
is not based on run-length encoding and it incorporates un-
compressed 16-bit integer list and uncompressed bitmap in a

Bitset

BBC

WAH

EWAH

PLWAH

CONCISE

VALWAH

SBH

Roaring

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

PforDelta*

SIMDPforDelta*

SIMDBP128*

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

ti
m

e
(m

s)

space (MB)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

ti
m

e
(m

s)

space (MB)

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400

ti
m

e
(m

s)

space (MB)

 0

 2000

 4000

 6000

 8000

 0 1000 2000 3000 4000

ti
m

e
(m

s)

space (MB)

 0

 1000

 2000

 3000

 0 200 400 600 800

(a) 1 million (uniform) (b) 10 million (uniform) (c) 100 million (uniform) (d) 1 billion (uniform)

 0

 1

 2

 3

 4

 0 1 2 3 4

ti
m

e
(m

s)

space (MB)

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6

 0

 10

 20

 30

 40

 0 10 20 30 40

ti
m

e
(m

s)

space (MB)

 10

 15

 20

 25

 30

 1 2 3 4

 0

 100

 200

 300

 400

 0 100 200 300 400

ti
m

e
(m

s)

space (MB)

 100

 150

 200

 250

 300

 0 10 20 30 40 50

 0

 1000

 2000

 3000

 4000

 0 1000 2000 3000 4000

ti
m

e
(m

s)

space (MB)

 1000

 2000

 3000

 0 200 400

(e) 1 million (zipf) (f) 10 million (zipf) (g) 100 million (zipf) (h) 1 billion (zipf)

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300

ti
m

e
(m

s)

space (MB)

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

ti
m

e
(m

s)

space (MB)

 0

 10

 20

 30

 40

 10 15 20 25

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400

ti
m

e
(m

s)

space (MB)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000

ti
m

e
(m

s)

space (MB)

(i) 1 million (markov) (j) 10 million (markov) (k) 100 million (markov) (l) 1 billion (markov)

Figure 3: Evaluating decompression with varying list sizes

hybrid way adaptively depending on the number of elements
in a bucket.

(3) Among all the inverted list compression approaches,
SIMDPforDelta* and SIMDBP128* are the top two most
competitive techniques. Between the two, SIMDBP128* is
faster but at the expense of consuming more space than
SIMDPforDelta*. That is because SIMDPforDelta* stores
the delta values to reduce space such that it needs extra time
to compute prefix sums.

(4) Many bitmap compression methods (e.g., WAH and
EWAH) can consume more space than the original list, i.e.,
uncompressed list, see Figure 3a, Figure 3b. However, in-
verted list compression methods never consume more space
than the original list.

(5) For uncompressed bitmap (Bitset), it is dominated by
Roaring in almost all cases. Figure 3 shows that Bitset only
works well when it is very dense because its size as well as
performance depends on the maximal element in the list (re-
gardless of the list size). However, when the list size is long
(e.g., 1 million), then Bitset is almost equivalent to Roar-
ing because every bucket in Roaring turns to be represented
by an uncompressed bitmap. However, when it is sparse,
Roaring outperforms Bitset significantly.

(6) For BBC, its space overhead is almost the smallest
when compared to other bitmap compression methods be-
cause of the four cases to minimize space overhead. However,
its decompression speed is not excellent because it needs to
handle many complicated cases.

(7) For SBH, it is worse than BBC in almost all cases. It is
not surprising that SBH consumes more space because BBC
has four cases in order to reduce space overhead. However,
it is surprising that SBH is slower than BBC for decompres-
sion. That is because SBH needs to access the first two bits
of the current and next byte during each iteration, which
makes the algorithm slow. This contradicts with the orig-
inal paper [23]. We speculate that the original paper may
have implemented BBC poorly.
(8) For VB, it is not always worse than PforDelta, which

contradicts with a prior paper [42]. Figure 3 shows that VB
is faster than PforDelta under the zipf distribution. That
is because VB operates on bytes instead of bits. However,
when the list is very long, VB consumes much more space
because it needs at least one byte to encode any integer. For
example, Figure 3d shows that VB takes 1.76× more space
than PforDelta.
(9) For PforDelta, it is a mature inverted list compression

algorithm in the literature. There are many commonalities
between PforDelta and WAH. First, both are very mature in
each area; Second, PforDelta is based on d-gaps and WAH
is based on run-lengths. Note that the d-gap is essentially
the bit-level run-length. But it is interesting to see that
PforDelta is better than WAH in terms of both decompres-
sion overhead and space overhead. The high performance
is because WAH needs to perform many bit manipulations
for literal words. The low space overhead is that PforDelta

uniform zipf markov
1M 10M 100M 1B 100M 1B 100M 1B

Bitset 41.48 42.0 40.2 45.0 0.2 2.3 41.5 42.5
BBC 0.13 89.7 1004.1 269.1 0.3 3.4 260.8 1291.4
WAH 0.06 57.5 245.4 144.8 0.2 2.6 103.7 155.1
EWAH 0.10 91.2 135.4 47.0 0.2 2.3 106.6 56.6
PLWAH 0.15 82.7 329.3 156.9 0.2 2.5 134.9 176.4
CONCISE 0.09 76.2 577.6 301.6 0.2 2.4 137.8 263.8
VALWAH 0.06 87.5 805.6 980.4 0.3 3.2 207.7 1651.3
SBH 1.10 98.4 852.2 1128.0 0.3 3.9 228.6 1852.9
Roaring 0.03 1.7 14.0 10.9 0.2 1.9 5.3 5.7
List 0.01 2.3 23.7 241.9 5.9 64.7 9.3 103.6
VB 0.02 8.3 46.4 463.5 3.6 38.2 10.8 105.9
Simple9 0.02 6.9 60.2 475.8 3.3 35.5 12.3 119.2
PforDelta 0.03 5.6 55.9 526.5 3.8 39.5 9.6 100.2
NewPforDelta 0.02 7.3 74.9 728.9 4.2 48.7 10.5 110.9
OptPforDelta 0.02 7.9 82.3 804.9 4.2 49.2 10.8 117.4
Simple16 0.03 6.2 70.4 525.4 3.3 36.2 12.7 129.0
GroupVB 0.02 5.4 40.3 416.6 3.2 34.4 9.2 94.9
Simple8b 0.03 4.9 55.9 477.5 3.3 35.2 11.3 115.3
PEF 0.03 2.0 20.0 180.8 5.9 64.3 18.2 184.3
SIMDPforDelta 0.03 5.3 51.8 493.2 3.8 39.7 9.2 96.5
SIMDBP128 0.02 3.7 39.3 397.3 3.5 35.7 9.0 94.8
PforDelta* 0.03 4.1 41.8 401.6 3.2 34.5 9.1 93.4
SIMDPforDelta* 0.01 3.8 34.1 342.5 3.2 31.5 8.2 85.3
SIMDBP128* 0.01 3.0 31.6 315.2 2.7 30.3 7.7 81.3

Table 1: Evaluating intersection time (ms) with
varying list sizes

encodes a majority of elements in a block using the same
number of bits while dealing with exceptions separately.

(10) For the Simple family, Figure 3 shows that Simple8b
consistently outperforms PforDelta under the zipf distribu-
tion in terms of both space overhead and execution time.
This is a new result since previous works did not compare
PforDelta and Simple8b [42]. But Simple9 and Simple16
are worse than PforDelta in most cases which confirms the
results in [42].

(11) For GroupVB, its decompression performance is much
better than PforDelta, sometimes, by a large margin. For
example, Figure 3d shows that GroupVB is 1.6× faster in
decompression than PforDelta. However, its space overhead
is larger than PforDelta.

(12) For PEF, its decompression overhead is much worse
than its competitors because it needs to access every bit of
the high-bit array. This is a new result since the original
paper did not evaluate its decompression overhead [30]. But
an important property of PEF is that it does not need to de-
compress the entire block for some intersection as we explain
in Section 5.2.

(13) For SIMDPforDelta, it takes the same amount of
space with PforDelta but is around 1.2× faster in decom-
pression performance. That is because a SIMD instruction
can process multiple elements at the same time.

5.2 Intersection
We present the results of the intersection of two lists L1

and L2 (|L1| ≤ |L2|) with different list sizes, while we eval-
uate the effect of skip pointers and list size ratios in Ap-
pendix C.1 and Appendix C.2.

Table 1 shows the effect of list size where both lists are
generated following the uniform, zipf, and markov distribu-

tion. We set the |L2|
|L1|

= 1000 and vary |L2| from 1 million

to 1 billion. But on the zipf distribution and markov distri-
bution, we omit the results of 1 million and 10 million due
to space constraints. Table 1 shows that:

(1) In general, Roaring achieves the fastest intersection

performance. The reason is that, Roaring stores uncom-
pressed 16-bit integers and uncompressed bitmaps such that
intersection can be performed efficiently on the compressed
data. Moreover, Roaring can perform bucket-level intersec-
tion and skip many unnecessary buckets. As a result, it only
intersects two promising buckets, i.e., two buckets sharing
the same bucket number. Also, it can leverage in-bucket
binary search for the array-array case to avoid unnecessary
element-wise comparison. When the list size is 1 billion, the
performance is extremely fast because there are many array-
bitmap combinations that can be performed ultra efficiently
since the array is essentially uncompressed (16-bit) and the
bitmap is indeed uncompressed. This confirms the results
made in [10]. The drawback of Roaring is that it consumes
more space than inverted list compression methods such as
SIMDPforDelta*.

(2) Among all the inverted list compression methods, PEF
and SIMDBP128* are the most efficient algorithms. In par-
ticular, with the zipf distribution, SIMDBP128* is the fastest
one while PEF is the best in other cases. That is because
PEF does not need to decompress a whole block for inter-
section. However, under the zipf distribution, the elements
tend to be concentrated at the beginning of the domain. As
a result, all the elements in a block have to be decompressed.
Recall in Figure 3 that PEF has the slowest decompression
speed. Thus, PEF does not perform well in the cases where
the entire lists need to be decompressed.

(3) VALWAH is much slower than WAH, sometimes, by a
large margin. For example, under the uniform distribution,
VALWAH is 1.3× to 6.7× slower than WAH, which is much
more than the original paper claims (i.e., 3% slower) [20].
The main issue of VALWAH is that it has to deal with com-
plicated segment alignment issue, which cannot process data
as fast as it should be. But its space overhead is smaller than
WAH because it uses various segment lengths for different
lists.

(4) SBH is slower than BBC, which contradicts with the
original paper [23]. The reason is that SBH needs to ac-
cess more bits within a compressed word as explained in
Section 5.1.

(5) VB is not always slower than PforDelta. This con-
tradicts with the prior finding that PforDelta outperforms
VB [42]. The advantage of VB comes from byte accesses
instead of bit accesses.

(6) SIMDPforDelta is 5.1% to 7.2% faster than PforDelta
but takes the same space overhead because a SIMD instruc-
tion processes more elements at the same time.

5.3 Union
Next, we show the experimental results on union. Union

is an important operation because multi-criteria queries and
range queries can be converted to the union of multiple

bitmaps. We set |L2|
|L1|

= 1000 and vary |L2|. Table 2 shows

the results.
(1) In general, inverted list compression methods are faster

than bitmap compression methods (see Figure 3). That is
because union tends to have high result size such that it re-
quires many bit operations to extract all 1’s to obtain a list
of uncompressed integers for bitmap compression methods.

(2) Among all the bitmap compression methods, Roaring
is the best in almost all cases in terms of space and time.

(3) Among all the inverted list compression approaches,
SIMDBP128* and SIMDPforDelta* are very competitive in

Bitset

BBC

WAH

EWAH

PLWAH

CONCISE

VALWAH

SBH

Roaring

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

PforDelta*

SIMDPforDelta*

SIMDBP128*

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25

ti
m

e
(m

s)

space (MB)

 0

 10

 20

 30

 0 1 2 3 4 5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6

ti
m

e
(m

s)

space (MB)

 0

 2

 4

 6

 8

 0.5 1 1.5 2

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4

ti
m

e
(m

s)

space (MB)

 0.5

 1

 1.5

 0.2 0.3 0.4

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

ti
m

e
(m

s)

space (MB)

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8

(a) Q1.1 (SF = 1) (b) Q2.1 (SF = 1) (c) Q3.4 (SF = 1) (d) Q4.1 (SF = 1)

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

ti
m

e
(m

s)

space (MB)

 0

 100

 200

 300

 0 10 20 30 40 50

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

ti
m

e
(m

s)

space (MB)

 0

 20

 40

 60

 80

 5 10 15 20

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

ti
m

e
(m

s)

space (MB)

 5

 10

 15

 2 3 4

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200

ti
m

e
(m

s)

space (MB)

 200

 250

 300

 350

 400

 20 40 60 80

(e) Q1.1 (SF = 10) (f) Q2.1 (SF = 10) (g) Q3.4 (SF = 10) (h) Q4.1 (SF = 10)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500

ti
m

e
(m

s)

space (MB)

 0

 1000

 2000

 3000

 0 200 400

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

ti
m

e
(m

s)

space (MB)

 0

 200

 400

 600

 800

 50 100 150 200

 0

 50

 100

 150

 200

 250

 0 100 200 300 400

ti
m

e
(m

s)

space (MB)

 50

 100

 150

 20 30 40

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000

ti
m

e
(m

s)

space (MB)

 2000

 3000

 4000

 200 400 600 800

(i) Q1.1 (SF = 100) (j) Q2.1 (SF = 100) (k) Q3.4 (SF = 100) (l) Q4.1 (SF = 100)

Figure 4: Results on SSB data

uniform zipf markov
1M 10M 100M 1B 100M 1B 100M 1B

Bitset 59.0129.0 510.92786.2 194.2 2908.3 359.4 3881.9
BBC 8.5 65.51144.17127.2 421.5 4232.9 632.213822.3
WAH 8.6 96.51007.94497.3 369.6 3676.3 552.410346.3
EWAH 3.7 59.4 906.44296.7 361.8 3671.4 537.110254.8
PLWAH 7.8 89.31157.65341.2 426.8 4313.0 548.711255.0
CONCISE 8.4 94.2 944.74334.9 365.5 3664.6 549.210982.3
VALWAH 10.5101.51091.36797.4 438.1 4357.8 556.114138.8
SBH 4.3 53.4 887.54320.1 362.4 3704.5 614.712626.4
Roaring 3.2 31.4 314.83187.2 185.6 1906.5 174.5 3321.1
List 1.6 15.6 157.01579.6 156.8 1538.5 157.2 4406.8
VB 4.1 67.1 357.73581.6 354.0 3511.9 397.9 8037.7
Simple9 4.4 54.3 459.03778.9 323.5 3273.1 487.9 9532.7
PforDelta 4.0 42.1 417.94298.9 401.6 3956.7 422.3 9325.7
NewPforDelta 5.8 58.0 579.26284.7 550.6 5250.9 653.413229.7
OptPforDelta 6.6 61.9 630.66874.0 546.4 5241.6 624.014620.5
Simple16 4.4 50.5 544.14176.7 327.5 3297.1 511.810272.9
GroupVB 3.5 38.7 303.93087.0 303.5 3090.1 325.5 7217.1
Simple8b 4.3 39.8 406.63772.3 334.1 3373.5 428.8 8959.5
PEF 11.6129.31109.09434.3 546.7 5432.1 790.215963.2
SIMDPforDelta 3.6 38.4 375.03902.9 379.0 3763.5 380.0 8575.6
SIMDBP128 2.7 29.6 291.72973.6 297.43022.52 293.5 6933.9
PforDelta* 2.9 31.6 306.13082.5 305.8 3132.3 311.9 7284.4
SIMDPforDelta* 2.3 24.8 237.82433.4 235.1 2455.0 240.3 5802.9
SIMDBP128* 2.0 21.8 212.82184.2 211.1 2210.9 214.4 5476.6

Table 2: Evaluating union time (ms) with varying
list sizes

terms of both space and time. Note that Roaring is worse
than SIMDBP128* and SIMDPforDelta* because Roaring
cannot skip any element for the array-array case and also

Roaring requires many bit operations to extract all 1’s for
the bitmap-bitmap case.

6. RESULTS ON REAL DATASETS
In this section, we present the results on real datasets.

We have 8 real datasets in total. Due to space constraints,
we present the results of SSB, TPCH, and Web data in Sec-
tion 6.1, Section 6.2, and Section 6.3, respectively. We put
the results on the other datasets in Appendix C.3 (Graph),
Appendix C.4 (KDDCup), Appendix C.5 (Berkeleyearth),
Appendix C.6 (Higgs), and Appendix C.7 (Kegg).

6.1 Results on SSB
The SSB (star schema benchmark)9 is a typical database

workload that includes one fact table (LINEORDER) and
four dimension tables (CUSTOMER, SUPPLIER, PART,
and DATE). We set the scale factor as 1, 10, and 100 so
the number of rows in the fact table is around 6 million, 60
million, and 600 million. We use Q1.1, Q2.1, Q3.4, and Q4.1
for evaluation. Q1.1 involves an intersection of 3 lists with
a selectivity of 1/7, 1/2, and 3/11 on the fact table. Q2.1
involves an intersection of 2 lists with a selectivity of 1/25
and 1/5 on the fact table. Q3.4 involves 5 lists (L1, L2, L3,
L4, and L5) with a selectivity of 1/250, 1/250, 1/250, 1/250,
and 1/364. The query is (L1 ∪ L2) ∩ (L3 ∪ L4) ∩ L5, which
is a combination of intersection and union. Q4.1 involves 4

9http://www.cs.umb.edu/˜poneil/StarSchemaB.PDF

lists (L1, L2, L3, and L4) with a selectivity of 1/5, 1/5, 1/5,
and 1/5 on the fact table. The query is L1 ∩L2 ∩ (L3 ∪L4).
We present the results in Figure 4. (1) It shows that,

for Q1.1, Q2.1, and Q4.1, Roaring and Bitset are the top
two fastest approaches. That is because the lists involved
in those queries are long (or dense). In this case, Roaring
is similar to Bitset because most buckets in Roaring have
more than 4096 elements. And they can leverage efficient
bit-wise computations. For Q3.4, inverted list compression
methods tend to be slightly better. In particular, SIMDP-
forDelta* and SIMDBP128* are the fastest. Roaring, on the
other hand, is slightly slower than these two methods. That
is because the lists in Q3.4 are short (or sparse) since the
selectivities are 1/250 and 1/364. (2) In terms of space over-
head, inverted list compression methods tend to consume
less space. But when the lists are dense, e.g., Q4.1, bitmap
compression methods consume similar space to inverted list
compression methods. In particular, SIMDPforDelta* is the
most space-efficient compression algorithm.

6.2 Results on TPCH
Then we show the results on TPCH, which is a popular

decision support benchmark.10 We set the scale factor as 1,
10, and 100. We choose a variant of Q6 and Q12 following
[5]. In which, Q6 contains 3 lists (L1, L2, and L3) with
a selectivity of 1/7, 3/11, and 1/50. The query is L1 ∩
L2 ∩ L3. Q12 also involves 3 lists (L1, L2, and L3) but
with a selectivity of 1/10, 1/10, and 1/364. The query is
(L1 ∪ L2) ∩ L3.
Figure 5 shows that for Q6, Roaring is the best compres-

sion method among all bitmap compression methods as well
as inverted list compression methods. It is even faster than
uncompressed list. That is because the lists are very dense
and Roaring can leverage efficient bit-wise computations.
However, for Q12, Roaring consumes more space than in-
verted list compression methods although it is still faster.
In particular, SIMDPforDelta* has the least space overhead
for Q12.

6.3 Results on Web data
Then we present the results on a typical information re-

trieval workload – Web data. It is a collection of 41 million
Web documents (around 300GB) crawled in 2012.11 It is
a standard benchmark in the information retrieval commu-
nity. We parse the documents and build inverted lists for
each term. The query log contains 1000 real queries ran-
domly selected from the TREC12 2005 and 2006.

We run those queries on the web data, report the average
intersection and union time, and show the results in Fig-
ure 6. (1) In terms of intersection performance, Figure 6
clearly shows that Roaring outperforms the other compres-
sion methods. It is even faster than uncompressed list. That
is because Roaring can leverage the merits of both uncom-
pressed integer lists (16 bits) and uncompressed bitmaps.
This means that, although information retrieval systems al-
ways use inverted lists for query processing, it does not
mean inverted lists always achieve the best performance.
Besides that, among all the inverted list compression meth-
ods (except uncompressed list), SIMDBP128* and SIMDP-
forDelta* are the top two fastest algorithms. (2) In terms of

10http://www.tpc.org/tpch/
11http://www.lemurproject.org/clueweb12.php
12http://trec.nist.gov/

Bitset

BBC

WAH

EWAH

PLWAH

CONCISE

VALWAH

SBH

Roaring

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

PforDelta*

SIMDPforDelta*

SIMDBP128*

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

ti
m

e
(m

s)

space (MB)

 0

 5

 10

 15

 20

 0 1 2 3 4 5

ti
m

e
(m

s)

space (MB)

(a) Q6 (SF = 1) (b) Q12 (SF = 1)

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120

ti
m

e
(m

s)

space (MB)

 0

 50

 100

 150

 200

 0 10 20 30 40 50

ti
m

e
(m

s)

space (MB)

(c) Q6 (SF = 10) (d) Q12 (SF = 10)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000 1200

ti
m

e
(m

s)

space (MB)

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500

ti
m

e
(m

s)

space (MB)

(e) Q6 (SF = 100) (f) Q12 (SF = 100)

Figure 5: Results on TPCH data

Bitset

BBC

WAH

EWAH

PLWAH

CONCISE

VALWAH

SBH

Roaring

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

PforDelta*

SIMDPforDelta*

SIMDBP128*

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

ti
m

e
(m

s)

space (GB)

 0

 10

 20

 30

 0 5 10 15 20

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

ti
m

e
(m

s)

space (GB)

 0

 10

 20

 30

 40

 0 5 10 15 20

(a) Intersection (b) Union

Figure 6: Results on Web data

union performance, Figure 6 clearly shows that inverted list
compression methods outperform bitmap compression meth-
ods (including Roaring). In particular, SIMDPforDelta* and
SIMDBP128* are the fastest. (3) In terms of space overhead,
Figure 6 shows that inverted list compression methods tend
to consume less space.

7. SUMMARY AND FURTHER DIRECTIONS
In this section, we summarize the main findings of the

work and discuss future directions based on the results.

7.1 Bitmap compression or inverted list com-
pression?

Let’s come back to the question: Which one is better
between bitmap compression and inverted list compression?
Clearly it is not a black-white question. Although it is safe
to say that the answer depends on different situations – in-
deed it is – that is not useful. Here we try to give a simple
and decisive answer that can be used for future systems.

1. Space overhead. Inverted list compression methods
generally take less space than bitmap compression meth-
ods unless the list L is ultra dense. In particular, (1)
if L follows the uniform distribution or markov dis-
tribution, then if L is short or moderate long, e.g.,
|L|
d

< 1
5

(see Figure 4) where d is the domain size,
then inverted list compression methods consume less
space. In particular, SIMDPforDelta* takes the least
space. If L follows the uniform distribution or markov

distribution, then if L is extremely long, e.g., |L|
d

≥ 1
5
,

then bitmap compression methods consume less space.
In particular, Roaring and Bitset consume the least
space. (2) If L follows the zipf distribution, then no
matter whether L is short or long, SIMDPforDelta*
takes the least space.

2. Decompression time. Inverted list compression meth-
ods are generally faster than bitmap compression meth-
ods in nearly all cases. In particular, SIMDBP128*
achieves the best decompression performance.

3. Intersection time. In general, Roaring bitmap achieves
the fastest intersection performance among all the com-
pression methods.

4. Union time. Inverted list compression methods gener-
ally have better union performance than bitmap com-
pression methods. In particular, SIMDBP128* is the
fastest one in nearly all cases.

Next, we discuss which technique should be used from a
viewpoint of query-level (instead of operation-level).

1. Top-k query in information retrieval (Section A.1). We
recommend Roaring because Roaring has the fastest
intersection performance in general and intersection is
the most time-consuming part in top-k query process-
ing as explained in Section A.1.

2. Conjunctive query in databases (Section A.2). We rec-
ommend Roaring because it has the fastest intersec-
tion performance in general among all the compression
methods.

3. Disjunctive query in databases (Section A.2). We rec-
ommend SIMDBP128* as it has the fastest union per-
formance in nearly all cases.

4. Star join in databases (Section A.2). We recommend
Roaring because a star join can be framed as the in-
tersection as described in Section A.2 and Roaring has
the highest intersection performance in general.

5. Range query in databases (Section A.2). We recom-
mend SIMD-BP128* because a range query can be
converted to the union as described in Section A.2 and
SIMDBP128* generally has the highest union perfor-
mance.

Overall recommendations. In summary, we recommend
SIMDBP128*, SIMDPforDelta*, and Roaring as three com-
petitive compression methods. We do not recommend Bitset
since it consumes too much space in many cases. Our re-
sults are new and different from the prior conclusion that in-
verted list compression methods always outperform bitmap
compression methods [8].

7.2 Lessons
We provide the lessons that people can learn from this

work.

1. Although database systems preferred bitmap compres-
sion for around 20 years and information retrieval sys-
tems preferred inverted list compression for decades, it
does not mean that bitmap compression is always bet-
ter than inverted list compression or vice versa. Both
techniques can learn from each other to develop a bet-
ter unified compression method.

2. Although prior works claimed that bitmaps are suit-
able for high-cardinality columns via compression (e.g.,
BBC and WAH) [38, 39], this work shows that the
space overhead is much higher than inverted list com-
pression in that case. Thus, we amend the conclu-
sion as: Bitmaps are still suitable for low-cardinality
columns via compression and the compression method
should be Roaring (instead of BBC and WAH).

3. Use Roaring for bitmap compression whenever possi-
ble. Do not use other bitmap compression methods
such as BBC [22], WAH [22], EWAH [26], PLWAH [17],
CONCISE [13], VALWAH [20], and SBH [23].

4. Be sure to keep it simple when you invent a new bitmap
compression. A complicated bitmap compression algo-
rithm (e.g., BBC and VALWAH) tends to incur high
performance overhead.

5. Use SIMDBP128* and SIMDPforDelta* for inverted
list compression for high query performance (e.g., in-
tersection and union) and low space overhead.

6. Use VB [15] if you concern more on the implementation
overhead. Based on our experience, VB is perhaps the
simplest one to implement that requires less than 20
lines of C++ code (while BBC requires more than 3000
lines of code).

7. A compression method that is good for decompression
may not be good for intersection, and a compression
method that is good for intersection may also not good
for union. This is an overlooked issue in many prior
papers [2, 3, 25,40,43].

8. Be sure to build skip pointers on compressed inverted
lists. It will not increase the space overhead that much
(3% to 5%), but can improve the intersection perfor-
mance dramatically.

9. Be sure to design a SIMD-aware compression method.
By reorganizing the data layout will not increase the
space overhead, but it will improve query performance.

8. REFERENCES

[1] D. Abadi, S. Madden, and M. Ferreira. Integrating
compression and execution in column-oriented database
systems. In SIGMOD, pages 671–682, 2006.

[2] V. N. Anh and A. Moffat. Inverted index compression using
word-aligned binary codes. IR, 8(1):151–166, 2005.

[3] V. N. Anh and A. Moffat. Index compression using 64-bit
words. SPE, 40(2):131–147, 2010.

[4] G. Antoshenkov. Byte-aligned bitmap compression. In
DCC, page 476, 1995.

[5] M. Athanassoulis, Z. Yan, and S. Idreos. Upbit: Scalable
in-memory updatable bitmap indexing. In SIGMOD, pages
1319–1332, 2016.

[6] R. A. Baeza-Yates, C. Castillo, F. Junqueira,
V. Plachouras, and F. Silvestri. Challenges on distributed
web retrieval. In ICDE, pages 6–20, 2007.

[7] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a
planet: The google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[8] T. A. Bjørklund, N. Grimsmo, J. Gehrke, and
O. Torbjørnsen. Inverted indexes vs. bitmap indexes in
decision support systems. In CIKM, pages 1509–1512, 2009.

[9] B. B. Cambazoglu and R. A. Baeza-Yates. Scalability and
efficiency challenges in large-scale web search engines. In
SIGIR, pages 1223–1226, 2016.

[10] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better
bitmap performance with roaring bitmaps. SPE,
46(5):709–719, 2016.

[11] C. Y. Chan and Y. E. Ioannidis. Bitmap index design and
evaluation. In SIGMOD, pages 355–366, 1998.

[12] C. Y. Chan and Y. E. Ioannidis. An efficient bitmap
encoding scheme for selection queries. In SIGMOD, pages
215–226, 1999.

[13] A. Colantonio and R. D. Pietro. Concise: Compressed ‘n’
composable integer set. IPL, 110(16):644–650, 2010.

[14] J. S. Culpepper and A. Moffat. Efficient set intersection for
inverted indexing. TOIS, 29(1):1–25, 2010.

[15] D. R. Cutting and J. O. Pedersen. Optimizations for
dynamic inverted index maintenance. In SIGIR, pages
405–411, 1990.

[16] J. Dean. Challenges in building large-scale information
retrieval systems: Invited talk. In WSDM, page 1, 2009.

[17] F. Deliège and T. B. Pedersen. Position list word aligned
hybrid: Optimizing space and performance for compressed
bitmaps. In EDBT, pages 228–239, 2010.

[18] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall Press, 2008.

[19] G. Guzun and G. Canahuate. Hybrid query optimization for
hard-to-compress bit-vectors. VLDBJ, 25(3):339–354, 2016.

[20] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A tunable
compression framework for bitmap indices. In ICDE, pages
484–495, 2014.

[21] M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bianchini,
and K. S. McKinley. Few-to-many: Incremental parallelism
for reducing tail latency in interactive services. In
ASPLOS, pages 161–175, 2015.

[22] A. S. Kesheng Wu, Ekow J. Otoo and H. Nordberg. Notes
on design and implementation of compressed bit vectors,
2001.

[23] S. Kim, J. Lee, S. R. Satti, and B. Moon. Sbh: Super
byte-aligned hybrid bitmap compression. IS, 62:155–168,
2016.

[24] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandier,
L. Doshi, and C. Bear. The vertica analytic database:
C-store 7 years later. PVLDB, 5(12):1790–1801, 2012.

[25] D. Lemire and L. Boytsov. Decoding billions of integers per
second through vectorization. SPE, 45(1):1–29, 2015.

[26] D. Lemire, O. Kaser, and K. Aouiche. Sorting improves
word-aligned bitmap indexes. DKE, 69(1):3–28, 2010.

[27] C. D. Manning, P. Raghavan, and H. Schütze. Introduction

to Information Retrieval. Cambridge University Press,
2008.

[28] S. Mehrotra, S. Chauhan, and H. Bansal. Apache Hive
Cookbook. Packt Publishing, 2016.

[29] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The star
schema benchmark and augmented fact table indexing.
2009.

[30] G. Ottaviano and R. Venturini. Partitioned elias-fano
indexes. In SIGIR, pages 273–282, 2014.

[31] V. Raman, L. Qiao, W. Han, I. Narang, Y.-L. Chen, K.-H.
Yang, and F.-L. Ling. Lazy, adaptive rid-list intersection,
and its application to index anding. In SIGMOD, pages
773–784, 2007.

[32] K. Stockinger, J. Cieslewicz, K. Wu, D. Rotem, and
A. Shoshani. Using bitmap index for joint queries on
structured and text data. In New Trends in Data
Warehousing and Data Analysis, pages 1–23. 2009.

[33] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira.
Posting list intersection on multicore architectures. In
SIGIR, pages 963–972, 2011.

[34] L. Thiel and H. Heaps. Program design for retrospective
searches on large data bases. IPM, 8(1):1 – 20, 1972.

[35] S. Vigna. Quasi-succinct indices. In WSDM, pages 83–92,
2013.

[36] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu.
The impact of solid state drive on search engine cache
management. In SIGIR, pages 693–702, 2013.

[37] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu.
Cache design of ssd-based search engine architectures: An
experimental study. TOIS, 32(4):1–26, 2014.

[38] K. Wu, E. J. Otoo, and A. Shoshani. On the performance
of bitmap indices for high cardinality attributes. In VLDB,
pages 24–35, 2004.

[39] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap
indices with efficient compression. TODS, 31(1):1–38, 2006.

[40] H. Yan, S. Ding, and T. Suel. Inverted index compression
and query processing with optimized document ordering. In
WWW, pages 401–410, 2009.

[41] J. Yun, Y. He, S. Elnikety, and S. Ren. Optimal
aggregation policy for reducing tail latency of web search.
In SIGIR, pages 63–72, 2015.

[42] J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In WWW, pages
387–396, 2008.

[43] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In ICDE, 2006.

APPENDIX

In the appendix, we provide applications (Section A), imple-
mentation details (Section B), and more experiments (Sec-
tion C).

A. APPLICATIONS
In this section, we provide more details on the applica-

tions that require inverted list compression or bitmap com-
pression.

A.1 Information retrieval
Information retrieval (IR) is a killer application where

inverted lists are used to answer user queries with multi-
ple terms [27]. IR systems store an inverted list for each
term with all the document ids that contain the term. To
save space overhead, IR systems usually compress inverted
lists using VB [15], PforDelta [43], NewPforDelta [40], Sim-
ple16 [42], GroupVB [16], Simple8b [3], PEF [30], SIMDP-
forDelta [25], or SIMDBP128 [25].
In IR systems, typical query patterns include intersection,

union, list traversal, and top-k query processing [27]. In
which, intersection or union of the lists for a set of query
terms identifies those documents that contain all or at least
one of the terms. List traversal is required for processing
single-term queries and it is also important for supporting
intersection and union. Also, top-k query processing helps
find the most relevant documents to user queries.

Among those typical query patterns, there are three fun-
damental operations over compressed inverted lists: inter-
section, union, and decompression. (1) Intersection is used
to answer intersection queries and it is also the most time-
consuming part in top-k query processing [33]. Usually in
IR systems, there are two steps to find the top k most rele-
vant documents [33]: (i) find a list of candidate documents
that contain all the query terms (via intersection) because
those documents tend to be more relevant; (ii) compute the
similarity between the query and each candidate document
based on the payload information (e.g., document frequency)
and return the top k most relevant documents. Among the
two steps, the first step – intersection – is the most time-
consuming part [33]. (2) Union is used to return documents
that contain at least one of the query terms, which is ex-
tremely helpful when the intersection returns very few (or
even empty) results. (3) Decompression is required for list
traversal, intersection, and union.

A.2 Database
Database systems heavily use bitmaps for supporting effi-

cient query processing. A bitmap contains a collection of 0’s
and 1’s to indicate whether the corresponding rows contain
that particular value. To save space, bitmaps are usually
stored in a compressed manner, e.g., BBC [22], WAH [22],
EWAH [26], PLWAH [17], CONCISE [13], VALWAH [20],
SBH [23], and Roaring [10].

Bitmaps can be used to support many types of queries,
e.g., conjunctive queries, disjunctive queries, table scans,
range queries, and also star joins. Among them, there are
three fundamental query operations over compressed bitmaps:
intersection, union, and decompression. (1) Intersection is
used to answer conjunctive queries and star joins. For in-
stance, consider the star join example in [31] (Example 1)
that analyzes the coffee sales. The star join can be framed as
an intersection query between different bitmaps (or inverted
lists) where each bitmap (or inverted list) is precomputed
for a predicate as illustrated in [31]. (2) Union is used to
support disjunctive queries and range queries. Note that
a range query can be framed as a union between different
bitmaps (or inverted lists) [38]. For example, finding the
records whose ages are from 25 to 26 can be converted to
the union of two bitmaps where the first bitmap is dedicated
for age 25 and the second bitmap is dedicated for age 26.
(3) Decompression is used to support table scan as well as
intersection and union.

B. IMPLEMENTATION DETAILS
In this section, we provide more implementation details.

B.1 Bitmap compression implementation
We implement all the bitmap compression methods (in-

cluding Bitset, BBC [22], WAH [22, 39], EWAH [26], CON-
CISE [13], PLWAH [17], VALWAH [20], SBH [23], Roar-
ing [10]) from scratch using C++. Although there are open-
source implementations for a number of bitmap compression

methods (such as WAH, EWAH, and CONCISE), we do not
adopt them due to the following limitations. (1) The imple-
mentations are in different languages: some are implemented
in java and some are implemented in C++. (2) The query
results are not returned in the same format: some implemen-
tations return the compressed results for query processing
but others do not. For example, the existing implementa-
tion of EWAH returns a compressed bitmap for AND/OR

but WAH returns a non-compressed bitmap. (3) Existing
implementations have many bugs in our datasets, e.g., CON-
CISE throws an exception whenever the number of elements
is greater than 1 billion and WAH returns incorrect results
for many intersections and unions. (4) Some implementa-
tions do not support the query processing over more than
two bitmaps, and it is non-trivial to extend them to multiple
bitmaps if the returned results are non-compressed.
Due to the above limitations, we determine to implement

all the bitmap compression methods by ourselves. We try
our best to implement each algorithm as efficient as possible.
In particular, we use an array of 32-bit integers as the back-
end storage and perform bit manipulations directly over the
integer array. Whenever possible, we apply the CPU’s in-
structions to perform fast bit operations. For example, we
use the CPU’s popcnt instruction to obtain the number of
1’s in a word. We also use the ctz instruction to count the
trailing zeros in order to find the positions of 1’s in a word or
find the odd bit position in a byte (for BBC) or a word (for
EWAH). For intersection over two bitmaps, we have two
versions with different inputs: (1) bitmap vs bitmap; (2)
bitmap vs list. The intersection results are uncompressed
such that they can be either directly returned to end users or
as the input of other operations. The intersection between
more than two bitmaps is implemented by interesting the
first two bitmaps. Then the results (uncompressed integer
list) will be intersected with the next compressed bitmap.

B.2 Inverted list compression implementation
For inverted list compression methods, we implement VB,

PEF, PforDelta*, SIMDPforDelta*, and SIMDBP128* from
scratch in C++. We implement the rest compression meth-
ods (including Simple9 [2], PForDelta [43], NewPforDelta [40],
OptPforDelta [40], Simple16 [40], GroupVB [16], Simple8b [3],
SIMDPforDelta [25], SIMDBP128 [25]) based on the exist-
ing FastPFor codebase13 that has been used in [25]. The
existing codebase only provides functions for compression
and decompression. For each compression methods, we add
the intersection and union operation.

C. MORE EXPERIMENTS
In this section, we provide more experiments. Section C.1

evaluates the impact of building skip pointers for inverted
list compression. Section C.2 evaluates the effect of list size
ratios to intersection. Section C.3 presents the results on
Graph data. Section C.4 presents the results on KDDCup
data. Section C.5 presents the results on Berkeleyearth data.
Section C.6 presents the results on Higgs data. Section C.7
presents the results on Kegg data.

C.1 Effect of the skip pointers
In this set of experiments, we evaluate the impact of skip

pointers for inverted list compression. We pick up five in-

13https://github.com/lemire/FastPFor

no skip pointers with skip pointers

 0

 10

 20

 30

 40

 50

 60

VB PforDelta

SIMDPforDelta

SIMDPforDelta*

GroupVB

ti
m

e
(m

s)

algorithms

 0

 5

 10

 15

 20

VB PforDelta

SIMDPforDelta

SIMDPforDelta*

GroupVB

sp
a

ce
 (

M
B

)

algorithms

(a) time (uniform) (b) space (uniform)

 0

 10

 20

 30

 40

 50

VB PforDelta

SIMDPforDelta

SIMDPforDelta*

GroupVB

ti
m

e
(m

s)

algorithms

 0

 2

 4

 6

 8

 10

 12

 14

VB PforDelta

SIMDPforDelta

SIMDPforDelta*

GroupVB

sp
a

ce
 (

M
B

)

algorithms

(c) time (zipf) (d) space (zipf)

Figure 7: The impact of skip pointers

uniform zipf markov
θ = 1 θ = 10 θ = 1 θ = 10 θ = 1 θ = 10

Bitset 92.9 44.6 193.5 19.8 67.7 43.2
BBC 2655.6 1178.7 251.4 33.5 679.6 315.5
WAH 556.4 349.6 161.2 24.0 298.6 125.1
EWAH 683.9 422.7 171.5 18.8 351.0 136.7
PLWAH 632.8 756.8 255.7 23.7 367.0 161.8
CONCISE 978.6 355.2 148.8 44.4 370.8 162.9
VALWAH 1711.6 966.4 263.2 58.4 445.2 231.4
SBH 1994.8 669.8 156.7 25.9 526.1 265.6
Roaring 804.2 207.7 139.7 18.7 279.0 150.0
List 856.8 165.4 188.0 74.8 296.8 113.7
VB 1171.8 415.6 633.7 287.3 739.2 380.9
Simple9 1396.1 517.0 561.0 350.3 903.6 467.1
PforDelta 1384.4 452.3 725.1 512.9 773.7 395.2
NewPforDelta 1559.7 662.0 1028.9 510.0 1260.4 732.8
OptPforDelta 1684.9 724.5 1029.2 324.3 1285.4 763.3
Simple16 1573.0 601.9 567.1 233.2 950.5 492.0
GroupVB 1081.3 341.6 564.6 245.5 584.2 294.3
Simple8b 1287.2 444.7 577.2 164.6 803.0 403.4
PEF 2704.5 1240.9 1020.7 137.8 1536.2 802.3
SIMDPforDelta 1217.0 412.0 687.5 272.0 715.8 359.2
SIMDBP128 1054.8 320.6 505.2 261.2 536.1 260.8
PforDelta* 1087.2 336.9 517.1 265.4 574.1 276.1
SIMDPforDelta* 951.5 261.9 419.9 239.7 430.6 197.9
SIMDBP128* 901.0 233.9 369.7 507.6 378.3 168.7

Table 3: Evaluating intersection time (ms) with
varying list size ratios

verted list compression algorithms (VB, PforDelta, SIMDP-
forDelta, SIMDPforDelta*, and GroupVB) to demonstrate
the effect for intersection. Note that bitmap compression
methods usually do not build skip pointers in order to per-
form bit-wise operations. Building skip pointers prevents
the alignment of bitmaps. Figure 7 shows the results by set-
ting |L2| as 10 million and |L2|/|L1| as 1000. It shows that
adding skip pointers increases the space overhead within 5%
in most cases. However, it can dramatically improve the
query performance, e.g., the improvement can be 8.3× on
the uniform distribution and 124× on the zipf distribution.

C.2 Effect of the list size ratio
Next we investigate the effect of list size ratio. It is an

Bitset

BBC

WAH

EWAH

PLWAH

CONCISE

VALWAH

SBH

Roaring

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

PforDelta*

SIMDPforDelta*

SIMDBP128*

 0

 5

 10

 15

 20

 0 100 200 300 400

ti
m

e
(m

s)

space (MB)

 0
 1
 2
 3
 4

 0

 0

 0.5

 1

 0.8 1 1.2 1.4

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400

ti
m

e
(m

s)

space (MB)

 0

 5

 10

 15

 0 2 4 6 8 10

(a) Q1 (b) Q2

Figure 8: Results on Graph data

important parameter that determines to what extent the

skipping happens. We define the list size ratio θ = |L2|
|L1|

, set

|L2| as 100 million, and vary θ from 1 to 10. Table 3 shows
the results.

(1) In general, bitmap compression methods are faster
than inverted list compression methods. That is because in-
verted list compression methods have to follow merge-based
intersection when the list size ratio θ is 1 or 10. In this case,
bitmap compression methods can leverage efficient bit-wise
computations. This contradicts with the prior conclusions
made in [8]. But bitmap compression methods tend to con-
sume more space than inverted list compression methods
due to the fill words in general.
(2) Among all the bitmap compression methods, Roaring

is the fastest in general. An exception happens in the uni-
form distribution where the list size is 1 million, then Bitset
is much faster than Roaring. That is because Bitset can
directly perform efficient bit-wise operations but Roaring
needs to handle the extra bucket alignment issue – finding
out the promising buckets that intersect – before performing
bit-wise operations.
(3) Among all the inverted list compression approaches,

SIMDBP128* and SIMDPforDelta* are very competitive.
(4) It is worth noting that PEF turns out to be the slowest

compression method because it has to decompress the entire
list when θ is small.

C.3 Results on Graph data
We next show the results on graph data, which is a sub-

set of twitter dataset consisting of 52,579,682 vertices and
1,963,263,821 edges. Each list is an adjacency list of a
vertex. We generate two intersection queries where each
query involves 3 lists (L1, L2, and L3). In Q1, |L1| = 960,
|L2| = 50913, and |L3| = 507777. In Q2, |L1| = 507777,
|L2| = 526292, and |L3| = 779957. Note that, the longest
list is 779957, i.e., the one with the maximum degree. Fig-
ure 8 shows the results. Overall, inverted list compression
methods outperform bitmap compression methods for Q1
and Q2. In particular, SIMDBP128* and SIMDPforDelta*
are very competitive among all the compression methods.

C.4 Results on KDDCup data
KDDCup is a dataset used for distinguishing the abnor-

Bitset

BBC

WAH

EWAH

PLWAH

CONCISE

VALWAH

SBH

Roaring

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

PforDelta*

SIMDPforDelta*

SIMDBP128*

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

ti
m

e
(m

s)

space (MB)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16
ti

m
e

(m
s)

space (MB)

(a) Q1 (b) Q2

Figure 9: Results on KDDCup data

mal network connections.14 The dataset is used in [20]. It
contains 4,898,431 rows and 42 attributes. We choose two
queries Q1 and Q2 with different sizes (i.e., selectivities).
In which, Q1 and Q2 are two intersection queries that in-
clude two lists L1 and L2 but with different sizes. For Q1,
|L1| = 2833545 and |L2| = 4195364. Since domain size is
4898431, thus, the selectivities are 0.58 and 0.86. For Q2,
|L1| = 1051 and |L2| = 3744328, thus, the selectivities are
0.0002 and 0.76.

Figure 9 shows that, bitmap compression methods outper-
form inverted list compression methods on both Q1 and Q2.
In particular, Roaring is the best among all the competitors.
That is because for Q1, the lists are very dense such that
bitmap compression methods can leverage efficient bit-wise
computations. But for Q2, L1 is extremely short compared
with L2 such that the space overhead is dominated by L2,
which is very long.

C.5 Results on Berkeleyearth data
The Berkeleyearth data contains measurements from 1.6

billion temperature reports (used in [5]). We use a subset
that contains 61,174,591 rows. We choose two queries where
each query involves two lists (L1 and L2) but with different
sizes. In Q1, |L1| = 7730307 and |L2| = 9254744. In Q2,
|L1| = 5395 and |L2| = 8174163.
Figure 10 shows that for Q1, bitmap compression methods

outperform inverted list compression methods since the two
lists are dense. However for Q2, inverted list compression
methods generally outperform bitmap compression methods
(except for Roaring) since the lists are sparse. But Roaring
is the fastest one in execution time.

C.6 Results on Higgs data
The Higgs dataset is a signal database that is used to

determine whether a signal process produces Higgs bosons
or not.15 The dataset is used in [19]. It contains 11,000,000
rows. We generate two intersection queries where each query
contains two lists (L1 and L2) but with different sizes. In
Q1, |L1| = 172380 and |L2| = 4446476. In Q2, |L1| = 49170
and |L2| = 102607.
Figure 11 shows the results. For Q1, it clearly shows that

Roaring is the best in terms of space overhead and inter-

14https://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html

15https://archive.ics.uci.edu/ml/datasets/HIGGS

Bitset

BBC

WAH

EWAH

PLWAH

CONCISE

VALWAH

SBH

Roaring

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

PforDelta*

SIMDPforDelta*

SIMDBP128*

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

ti
m

e
(m

s)

space (MB)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

ti
m

e
(m

s)

space (MB)

 0

 0.1

 0.2

 0.3

 4 5 6 7 8

(a) Q1 (b) Q2

Figure 10: Results on Berkeleyearth data

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

ti
m

e
(m

s)

space (MB)

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5 3

ti
m

e
(m

s)

space (MB)

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3

(a) Q1 (b) Q2

Figure 11: Results on Higgs data (legends can be
found at Figure 10)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

ti
m

e
(m

s)

space (KB)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2 4 6 8 10 12 14
ti

m
e

(m
s)

space (KB)

(a) Q1 (b) Q2

Figure 12: Results on Kegg data (legends can be
found at Figure 10)

section time. That is because the two lists are very dense.
However, for Q2, SIMDBP128* and SIMDPforDelta* are
the most competitive compression methods.

C.7 Results on Kegg data
The Kegg dataset is a database of KEGG Metabolic path-

ways that consists of 53414 records.16 The dataset is used
in [19]. We generate two intersection queries (Q1 and Q2)
where each query involves two lists (L1 and L2). In Q1,
|L1| = 16965 and |L2| = 47783. In Q2, |L1| = 1082 and
|L2| = 1438.

Figure 12 shows the results. It shows that for Q1, Roar-
ing and Bitset are the top two best compression methods
in terms of space overhead and intersection time, since the
lists are very dense. But for Q2, SIMDBP128* and SIMDP-
forDelta* are the top two best compression methods because
the lists are sparse.

16https://archive.ics.uci.edu/ml/datasets/KEGG+
Metabolic+Relation+Network+(Directed)

